

THE CYRIL H. WECHT

Solvation and Vibrational Analysis of Propanamide

Connor J. Graça*, Dr. Jeffry D. Madura*

*Duquesne University, Bayer School of Natural and Environmental Science, The Cyril H. Wecht Institute of Forensic Science and Law

*Duquesne University, Bayer School of Natural and Environmental Science, Department of Chemistry and Biochemistry, Center for Computational Sciences

Background

- Propanamide: organic molecule
 - Amide of propanoic acid (see Figure 1)
- Used in ultraviolet resonance Raman (UVRR) spectroscopy[1]
 - Model for hydrogen bonding
 - Model of a peptide backbone
- Raman spectral peaks correspond to specific amide vibrations
- Going from gas phase to aqueous solution
 - ► N−H stretch frequency increases
 - C=O stretch frequency decreases
- We hypothesize that the amide I (Am I) vibrational frequency of propanamide decreases upon hydrogen bonding with water, while the Am II and Am III vibrational frequencies will increase under the same conditions.

Figure 1: Ball and stick model of propanamide

Computational Methods

- Calculated the energy minimum of the system (propanamide and water)
- Calculated frequencies for minimum energy geometries

Software Functional IQmol and QChem

M06-2X[2, 3]**Basis Set** 6-31G**[4]

Results

Figure 2: Primary amide modes of peptide backbone[5]

Figure 3: Primary amide vibrational modes of propanamide in the gas phase

Figure 4: Primary amide vibrational modes of propanamide and one water molecule

Mode	$ u$ (cm $^{-1}$)
Am I	≈ 1600
Am II	≈ 1550
Am III	\approx 1200 to 1340

Table 1: Experimentally determined normal modes of peptide backbone[5] Mode ν (cm⁻¹)

MOGC		4
Am I	1852	
Am II	1622	

Am III 1441

Table 2: Frequency of propanamide vibrations in the gas phase

Mode	u (cm ⁻¹)	$\Delta \nu$ (cm ⁻¹)
Am I	1852	-28
Am II	1622	8
Am III	1441	6

Table 3: Frequency of propanamide vibrations and one water molecule

 $\Delta \nu$ is the change in the frequency from propanamide to propanamide with one water molecule

Figure 5: Primary amide vibrational modes of propanamide and two water molecules

Am I 25 62	1)
Am I -35 -63	
Am II 2 10	
Am III 26 32	

Table 4: Frequency of propanamide vibrations and two water molecule

Results, Continued

 $\Delta \nu_1$ is the change in frequency between propanamide with one water molecule and propanamide with two water molecules, and $\Delta \nu_{\rm t}$ is the change in frequency between propanamide and propanamide with two water molecules

Conclusions and Future Work

- Continue adding water molecules to the system (three, four, five water molecules)
- Calculate primary amide vibrational modes of propanamide in a water shpere
- Hypothesis: Supported
 - Am I frequencies showed decreasing trend
 - Am II and Am III frequencies showed increasing trend

Acknowledgements

Thank you to:

- Dr. Jeffry D. Madura
- Madura Research Group
 - Matthew N. Srnec, Shiv Upadhyay and Riley Workman
- Duquesne University
- Bayer School of Natural and Environmental Science
- Scott Boesch
- Undergraduate Research Program
- National Institutes of Health R25, National Institute on Drug Abuse (NIDA) Grant
 - ► 1R25 DA032519 01
- National Science Foundation (NSF), Major Research Instrumentation (MRI)
 - ► CHE 1126465

References

- 1. Punihaole, D.; Jakubek, R.; Dahlburg, E.; Hong, Z.; Myshakina, N.; Geib, S.; Asher, S. J. Phys. Chem. B 2015, 119, 3931-3939.
- 2. Zhao, Y.; Truhlar, D. *Theor. Chem. Acc.* **2008**, *120*, 215–241.
- 3. Zhao, Y.; Truhlar, D. Accounts Chem. Res. 2008, xxx, 1–11.
- 4. Janis, J.; Kaijser, P.; Sabin, J.; Smith, V. Mol. Phys. 1979, 37, 463-472.
- . Oladepo, S.; Xiong, K.; Hong, Z.; Asher, S. J. Phys. Chem. Lett. 2011, 2, 2604–2628.